内存双通道技术详解

双通道,就是在北桥芯片级里设计两个内存控制器,这两个内存控制器可相互独立工作,每个控制器控制一个内存通道。

技术简介

作用

在这两个内存通过CPU可分别寻址、读取数据,从而使内存的带宽增加一倍,数据存取速度也相应增加一倍(理论上)。流行的双通道内存构架是由两个64bit DDR内存控制器构筑而成的,其带宽可达128bit。因为双通道体系的两个内存控制器是独立的、具备互补性的智能内存控制器,因此二者能实现彼此间零等待时间,同时运作。两个内存控制器的这种互补“天性”可让有效等待时间缩减50%,从而使内存的带宽翻倍。双通道是一种主板芯片组(Athlon 64集成于CPU中)所采用新技术,与内存本身无关,任何DDR内存都可工作在支持双通道技术的主板上,所以不存在所谓“内存支持双通道”的说法。

双通道内存技术

双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的内存带宽瓶颈问题它才走到了台式机主板技术的前台。英特尔公司曾经推出了支持双通道内存传输技术的i820芯片组,它与RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被家用机市场所淘汰。由于英特尔已经放弃了对RDRAM的支持(也是家用机领域,在服务器领域,内存仍是以SD内存占主导地位),所以主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865、875系列,而AMD方面则是NVIDIA Nforce2系列。

双通道体系

双通道体系包含了两个独立、具备互补性的智能内存控制器,两个内存控制器都能够并行运作。例如,当控制器B准备进行下一次存取内存的时候,控制器A就读/写主内存,反之亦然。两个内存控制器的这种互补的“天性”可以让有效等待时间缩减50%,因此双通道技术使内存的带宽翻了一翻。它的技术核心在于:芯片组(北桥)可以在两个不同的数据通道上分别寻址、读取数据,RAM可以达到128bit的带宽。

解决什么

双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。CPU的FSB(前端总线频率)越来越高,英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是外频的4倍。英特尔 Pentium 4的FSB分别是400、533、800MHz,总线带宽分别是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266、DDR 333、DDR 400所能提供的内存带宽分别是4.2GB/sec,5.4GB/sec和6.4GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是外频的2倍,其对内存带宽的需求远远低于英特尔 Pentium 4平台,其FSB分别为266、333、400MHz,总线带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用单通道的DDR 266、DDR 333、DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成显示芯片的整合型主板。

技术进展

NVIDIA推出的nForce芯片组是第一个把DDR内存接口扩展为128-bit的芯片组,随后英特尔在它的E7500服务器主板芯片组上也使用了这种双通道DDR内存技术,SiS和VIA也纷纷响应,积极研发这项可使DDR内存带宽成倍增长的技术。但是,由于种种原因,要实现这种双通道DDR(128 bit的并行内存接口)传输对于众多芯片组厂商来说绝非易事。DDR SDRAM内存和RDRAM内存完全不同,后者有着高延时的特性并且为串行传输方式,这些特性决定了设计一款支持双通道RDRAM内存芯片组的难度和成本都不算太高。但DDR SDRAM内存却有着自身局限性,它本身是低延时特性的,采用的是并行传输模式,还有最重要的一点:当DDR SDRAM工作频率高于400MHz时,其信号波形往往会出现失真问题,这些都为设计一款支持双通道DDR内存系统的芯片组带来不小的难度,芯片组的制造成本也会相应地提高,这些因素都制约着这项内存控制技术的发展。

普通的单通道

普通的单通道内存系统具有一个64位的内存控制器,而双通道内存系统则有2个64位的内存控制器,在双通道模式下具有128bit的内存位宽,从而在理论上把内存带宽提高一倍。虽然双64位内存体系所提供的带宽等同于一个128位内存体系所提供的带宽,但是二者所达到效果却是不同的。双通道体系包含了两个独立的、具备互补性的智能内存控制器,理论上来说,两个内存控制器都能够在彼此间零延迟的情况下同时运作。比如说两个内存控制器,一个为A、另一个为B。当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让等待时间缩减50%。双通道DDR的两个内存控制器在功能上是完全一样的,并且两个控制器的时序参数都是可以单独编程设定的。这样的灵活性可以让用户使用二条不同构造、容量、速度的DIMM内存条,此时双通道DDR简单地调整到最低的内存标准来实现128bit带宽,允许不同密度/等待时间特性的DIMM内存条可以可靠地共同运作。

双通道

支持双通道DDR内存技术的台式机芯片组,英特尔平台方面有英特尔的865P、865G、865GV、865PE、875P以及之后的915、925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面则有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以后的芯片。在双通道流行的今天,MCP73居然不支持。当然,考虑到设计Intel平台芯片组时必须加入内存控制器,再加上MCP73是单芯片设计,能够做到如此高的集成度实属不易,毕竟是针对低端整合市场的芯片组产品,也无须对MCP73Series不支持双通道这一点过分苛求。而且当前单通道DDR2800所提供的带宽也已经可以满意处理器的需要。MCP73最多支持2组DIMM,最高可支持8GB系统内存,不过有别于Intel芯片组设计,MCP73内存控制器并不会和FSB速度同步,因此使用任何速度的FSB处理器,均能支持DDR2-800频率,这在一定程度上弥补了不支持双通道DDR2的不足。

AMD的64位cpu,由于集成了内存控制器,因此是否支持内存双通道看CPU就可以。AMD的台式机CPU,只有939接口的才支持内存双通道,754接口的不支持内存双通道。除了AMD的64位CPU,其他计算机是否可以支持内存双通道主要取决于主板芯片组,支持双通道的芯片组上边有描述,也可以查看主板芯片组资料。此外有些芯片组在理论上支持不同容量的内存条实现双通道,不过实际还是建议尽量使用参数一致的两条内存条。

内存双通道一般要求按主板上内存插槽的颜色成对使用,此外有些主板还要在BIOS做一下设置,一般主板说明书会有说明。当系统已经实现双通道后,有些主板在开机自检时会有提示,可以仔细看看。由于自检速度比较快,所以可能看不到。因此可以用一些软件查看,很多软件都可以检查,比如cpu-z,比较小巧。在“memory”这一项中有“channels”项目,如果这里显示“Dual”这样的字,就表示已经实现了双通道。两条256M的内存构成双通道效果会比一条512M的内存效果好,因为一条内存无法构成双通道。

发展历史

在DDR RAM发展中期,记忆体带宽开始出现樽颈现象。原因是FSB带宽比记忆体带宽大得多,而处理器处理完的资料不能即时存入记忆体,造成处理器效能不能完全发挥。有见及此,芯片组厂商引入双通道内存技术。单条DDR记忆体是64位元带宽,而两条则是双倍-128位元。注:若芯片组只支援单通道内存,就算插入两条DDR记忆体也都是单通道内存,不会变成双通道内存。

在AMD平台,引入双通道内存技术的第一家芯片组厂商是nVidia。但当时AMD处理器的FSB带宽不是很大,双通道内存的效能提升作用轻微。其后Intel将DDR双通道内存技术引入,配合Xeon处理器,芯片组名为E7205。它支援DDR266双通道内存,用DDR的价钱得到RDRam的效能。而主板厂将之支援Pentium 4。毕竟是服务器平台产品,价格比较贵。而SiS的SiS 655出现,使DDR双通道成了平民化的技术;由于支援DDR333双通道内存,效能比E7205更高,价钱更低。而最经典的应该是i865PE了,支援DDR400双通道内存,800MHz FSB的Pentium 4。而i915P亦新增支援DDR-II 533双通道内存,P965支援DDR-II 1066双通道内存,最新的X48更支援DDR3-1600双通道内存。AMD平台方面,NVIDIA凭nForce 2 Ultra 400支援DDR400双通道内存,成为当时AMD平台效能最佳芯片组,更击败VIA的皇者地位。随后AMD的Athlon 64系列处理器亦内建了DDR400双通道内存控制器。Socket 940 – 支援DDR400 EEC双通道内存 Socket 939 – 支援DDR400 non-EEC双通道内存,内存效能较高 SiS和VIA亦在Intel和AMD平台推出过双通道内存芯片组。

 

编辑本段技术介绍

概述

随着高端处理器的推出,处理器对内存系统的带宽要求越来越高,内存带宽成为系统越来越大的瓶颈。内存厂商只要提高内存的运行频率,就可以增加带宽,但是由于受到晶体管本身的特性和制造技术的制约,内存频率不可能无限制地提升,所以在全新的内存研发出来之前,双通道内存技术就成了一种可以有效地提高内存带宽的技术。它最大的优势在于只要更改内存的控制方式,就可以在现有内存的基础上带来内存带宽的提升。从理论指标来看,双通道内存技术具有相当的优势。双通道DDR400的理论带宽为6.4GB/s,和英特尔的前端总线为800MHz的P4处理器及i865、i875芯片组完全匹配。前端总线为800MHz的P4平台选用双通道DDR400,与双通道的内存控制和管理机制及高带宽有很大关系。

技术原理

双通道内存技术其实就是双通道内存控制技术,它能有效地提高内存总带宽,从而适应新的微处理器的数据传输、处理的需要。双通道DDR有两个64bit内存控制器,双64bit内存体系所提供的带宽等同于一个128bit内存体系所提供的带宽。

双通道体系包含了两个独立的、具备互补性的智能内存控制器,两个内存控制器都能够并行运作。例如,当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让有效等待时间缩减50%,因此双通道技术使内存的带宽翻了一翻。它的技术核心在于:芯片组(北桥)可以在两个不同的数据通道上分别寻址、读取数据,RAM可以达到128bit的带宽。

编辑本段弹性双通道技术介绍

一、什么是弹性双通道

Intel弹性双通道内存技术的英文是Intel Flex Memory Technology,该技术使得内存的搭配更加灵活,它允许不同容量、不同规格甚至不成对的内存组成双通道,让系统配置和内存升级更具弹性。

Intel弹性双通道技术在915芯片组上就开始使用了,但直到945/955芯片组才成熟起来,并具有实用价值。而965、975芯片组又对它加以优化,具有更好的性能表现。

二、如何组建弹性双通道

一般的ATX主板上都会有分为两种不同颜色的4根内存插槽,相邻不同颜色的两根插槽组成一个内存通道。Intel弹性双通道技术拥有以下两种双通道内存工作模式:

1.对称双通道工作模式

对称双通道工作模式要求两个通道的内存容量相等,但是没有严格要求内存容量的绝对对称,可以A通道为512MB +512MB,B通道为一条1GB,只要A和B通道各自的总容量相等就可以了。该模式下可使用 2个、3个或 4个内存条获得双通道模式,如果使用的内存模块速度不同,内存通道速度取决于系统中安装的速度最慢的内存模块速度。具体情况如下:

(1)内存模组的绝对对称。这是最理想的对称双通道,即分别在相同颜色的插槽中插入相同容量的内存条,内存条数为2或4,该模式下所有的内存都工作在双通道模式下,性能最强。

(2)内存容量的对称。这种模式不要求两个通道中的内存条数量相等,可由3条内存组成双通道,两个通道的内存总容量相等就可以,所有内存也都工作在双通道模式下)性能略逊于模式(1)。

2.非对称双通道模式

在非对称双通道模式下,两个通道的内存容量可以不相等,而组成双通道的内存容量大小取决于容量较小的那个通道。例如A通道有512MB内存,B通道有1GB内存,则A通道中的512MB和B通道中的512MB组成双通道,B通道剩下的512MB内存仍工作于单通道模式下。需要注意的是,两条内存必须插在相同颜色的插槽中。

小提示:

主板芯片组会自动检测内存模组,如果发现两条容量相同的内存分别安装在不同颜色的插槽中,会自动工作在单通道模式下。因此应该首选把相同容量的内存条插在相同颜色的插槽中,可以获得相对更好的性能,如果按照所示安装内存条,只能工作在单通道模式下。

技术发展

双通道内存技术推出的最初目的也就是为了解决CPU总线带宽和内存带宽不匹配之间的矛盾,随着前端总线FSB越来越高,内存的带宽显然就成了一个瓶颈了,在这样的情况下,集成两个内存控制器,每个内存控制器控制一个通道,让两条内存独立寻址,这样内存的运行效率就可以实现翻倍的效果,让数据等待的时间缩短到50%,这一技术的应用,对于整个PC系统还是有重要意义的,尽管不能做到在所有应用都有明显的效果,但是在大多数应用都可以实现比较不错的效果,而且随着硬件技术的发展,双通道内存技术的效果也开始凸显。

三通道内存技术,实际上可以看作是双通道内存技术的后续技术发展。Core i7处理器的3通道内存技术,最高可以支持DDR3-1600内存,可以提供高达38.4GB/s的高带宽,和目前主流双通道内存20GB/s的带宽相比,性能提升几乎可以达到翻倍的效果。

技术应用

双通道内存主要是依靠主板北桥的控制技术,与内存本身无关。支持双通道内存技术的主板有Intel的i865和i875系列,SIS的SIS655、658系列,nVIDIAD的nFORCE2系列等。Intel最先推出的支持双通道内存技术的芯片组为E7205和E7500系列。

双通道内存的安装有一定的要求。主板的内存插槽的颜色和布局一般都有区分。如果是Intel的i865和i875系列,主板一般有4个DIMM插槽,每两根一组,每组颜色一般不一样,每一个组代表一个内存通道,只有当两组通道上都同时安装了内存条时,才能使内存工作在双通道模式下。另外要注意对称安装,即第一个通道第1个插槽搭配第二个通道第1个插槽,依此类推。用户只要按不同的颜色搭配,对号入座地安装即可。如果在相同颜色的插槽上安装内存条,则只能工作在单通道模式。而nFORCE2系列主板同样有两个64bit的内存控制器,其中A控制器只支持一根内存插槽,B通道则支持两根。A、B插槽之间有一段距离,以方便用户识别。A通道的内存插槽在颜色上也可能与B通道两个内存插槽不同,用户只要将一根内存插入独立的内存插槽而将另外一根插到另外两个彼此靠近的内存插槽就能组建成双通道模式。此外,如果全部插满内存,也能建立双通道模式,而且nForce2主板在组建双通道模式时对内存容量乃至型号都没有严格的要求,使用方便。

如果安装方法正确,在主板开机自检时,屏幕显示内存的工作模式(如DDR333 Dual Channel Mode Enabled、激活双通道模式等),则内存已经工作在双通道模式。

服务器维护 服务器配置 服务器 维护 运维 网管 系统调优 网络调优 数据库优化